Title
22.3 A 128Gb 8-High 512GB/s HBM2E DRAM with a Pseudo Quarter Bank Structure, Power Dispersion and an Instruction-Based At-Speed PMBIST.
Abstract
There is enormous demand for high-bandwidth DRAM: in application such as HPC, graphics, high-end server and artificial intelligence. HBM DRAM was developed [1] using the advances in package technology: TSV, microbump and silicon-interposer. Owing to these advances, HBM has a much higher bandwidth, at a lower pin speed rate, than conventional DRAM. However, the 3D-stack structure causes TSV interface and PDN problems: TSV connection failure and 3D-accumulation of IR drop, which increases the total cost of HBM. Moreover, as memory bandwidth increases DRAM architectural challenges arise, power consumption and associated thermal problems increase as well.
Year
DOI
Venue
2020
10.1109/ISSCC19947.2020.9062977
ISSCC
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
37