Title
SnackNoC: Processing in the Communication Layer
Abstract
In this work, we propose and evaluate a Network-on-Chip (NoC) augmented with light-weight processing elements to provide a lean dataflow-style system. We show that contemporary NoC routers can frequently experience long periods of idle time, with less than 10% link utilization in HPC applications. By repurposing the temporal and spatial slack of the NoC, the proposed platform, SnackNoC, is able to compute linear algebra kernels efficiently within the communication layer with minimal additional resource costs. SnackNoC 'Snack' application kernels are programmed with a producer-consumer data model that uses the NoC slack to store and transmit intermediate data between processing elements. SnackNoC is demonstrated in a multi-program environment that continually executes linear algebra kernels on the NoC simultaneously with chip multiprocessor (CMP) applications on the processor cores. Linear algebra kernels are computed up to 14.2x faster on SnackNoC compared to an Intel Haswell EPx86 processing core. The cost of executing 'snack' kernels in parallel to the CMP applications is a minimal runtime impact of 0.01% to 0.83% due to higher link utilization, and an uncore area overhead of 1.1%.
Year
DOI
Venue
2020
10.1109/HPCA47549.2020.00045
2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)
Keywords
DocType
ISSN
in network processing,opportunistic computing,Network on chip,computer architecture
Conference
1530-0897
ISBN
Citations 
PageRank 
978-1-7281-6150-1
2
0.37
References 
Authors
24
5
Name
Order
Citations
PageRank
Karthik Sangaiah1142.61
Michael Lui251.09
Ragh Kuttappa320.37
Baris Taskin422740.82
Mark Hempstead598081.39