Title
Robust FinFET Schmitt Trigger Designs for Low Power Applications.
Abstract
The IoT development alongside with the more pronounced impact of process variability in modern technology nodes, is the central reason to control variability impact. Given the broad set of IoT devices running on battery-oriented environments, energy consumption should be minimal and the operation reliable. Schmitt Trigger inverters are frequently used for noise immunity enhancement, and have been recently applied to mitigate radiation effects and variability impact. Yet, Schmitt Trigger operation at nominal voltage still introduces high deviation on power consumption. Thus, the main contribution of this work is to identify the relationship between transistor sizing, supply voltage, energy, and process variability robustness to achieve a minimal energy consumption circuit while keeping robustness. On average, scenarios with a lower supply voltage applied on layouts with a smaller number of fins, presented adequate robustness in high variability scenarios. Exploring voltage and transistor sizing made possible a reduction of about 24.84% on power consumption.
Year
DOI
Venue
2019
10.1007/978-3-030-53273-4_3
VLSI-SoC
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Leonardo B. Moraes100.34
Alexandra Lackmann Zimpeck200.34
Cristina Meinhardt32113.35
Ricardo A. L. Reis421748.75