Title
GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning
Abstract
The majority of clinical trials fail due to low efficacy of investigated drugs, often resulting from a poor choice of target protein. Existing computational approaches aim to support target selection either via genetic evidence or by putting potential targets into the context of a disease specific network reconstruction. The purpose of this work was to investigate whether network representation learning techniques could be used to allow for a machine learning based prioritization of putative targets. We propose a novel target prioritization approach, GuiltyTargets, which relies on attributed network representation learning of a genome-wide protein-protein interaction network annotated with disease-specific differential gene expression and uses positive-unlabeled (PU) machine learning for candidate ranking. We evaluated our approach on 12 datasets from six diseases of different type (cancer, metabolic, neurodegenerative) within a 10 times repeated 5-fold stratified cross-validation and achieved AUROC values between 0.92 - 0.97, significantly outperforming previous approaches that relied on manually engineered topological features. Moreover, we showed that GuiltyTargets allows for target repositioning across related disease areas. An application of GuiltyTargets to Alzheimer’s disease resulted in a number of highly ranked candidates that are currently discussed as targets in the literature. Interestingly, one (COMT) is also the target of an approved drug (Tolcapone) for Parkinson’s disease, highlighting the potential for target repositioning with our method. The GuiltyTargets Python package is available on PyPI and all code used for analysis can be found under the MIT License at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/GuiltyTargets</uri> . Attributed network representation learning techniques provide an interesting approach to effectively leverage the existing knowledge about the molecular mechanisms in different diseases. In this work, the combination with positive-unlabeled learning for target prioritization demonstrated a clear superiority compared to classical feature engineering approaches. Our work highlights the potential of attributed network representation learning for target prioritization. Given the overarching relevance of networks in computational biology we believe that attributed network representation learning techniques could have a broader impact in the future.
Year
DOI
Venue
2022
10.1109/TCBB.2020.3003830
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Keywords
DocType
Volume
Computational Biology,Machine Learning,Protein Interaction Maps,Proteins
Journal
19
Issue
ISSN
Citations 
1
1545-5963
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Ozlem Muslu100.34
Charles Tapley Hoyt201.01
Mauricio Pio De Lacerda300.34
Martin Hofmann-Apitius437230.08
Holger Ulmer51229.68