Title
A Real-Time Game Theoretic Planner for Autonomous Two-Player Drone Racing
Abstract
In this article, we propose an online 3-D planning algorithm for a drone to race competitively against a single adversary drone. The algorithm computes an approximation of the Nash equilibrium in the joint space of trajectories of the two drones at each time step, and proceeds in a receding horizon fashion. The algorithm uses a novel sensitivity term, within an iterative best response computational scheme, to approximate the amount by which the adversary will yield to the ego drone to avoid a collision. This leads to racing trajectories that are more competitive than without the sensitivity term. We prove that the fixed point of this sensitivity enhanced iterative best response satisfies the first-order optimality conditions of a Nash equilibrium. We present results of a simulation study of races with 2-D and 3-D race courses, showing that our game theoretic planner significantly outperforms a model predictive control (MPC) racing algorithm. We also present results of multiple drone racing experiments on a 3-D track in which drones sense each others’ relative position with onboard vision. The proposed game theoretic planner again outperforms the MPC opponent in these experiments where drones reach speeds up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${1.25\,}\mathrm{{m}}/\mathrm{{s}}$</tex-math></inline-formula> .
Year
DOI
Venue
2020
10.1109/TRO.2020.2994881
IEEE Transactions on Robotics
Keywords
DocType
Volume
Drones,Games,Trajectory,Robots,Nash equilibrium,Sensitivity,Prediction algorithms
Journal
36
Issue
ISSN
Citations 
5
1552-3098
0
PageRank 
References 
Authors
0.34
10
5
Name
Order
Citations
PageRank
Riccardo Spica1112.30
Eric Cristofalo2233.40
Zijian Wang331.74
Eduardo Montijano421422.27
Mac Schwager593072.33