Title
MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant
Abstract
This paper presents the first wireless and programmable neural stimulator leveraging magnetoelectric (ME) effects for power and data transfer. Thanks to low tissue absorption, low misalignment sensitivity and high power transfer efficiency, the ME effect enables safe delivery of high power levels (a few milliwatts) at low resonant frequencies (~250 kHz) to mm-sized implants deep inside the body (30-mm depth). The presented MagNI (Magnetoelectric Neural Implant) consists of a 1.5-mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> 180-nm CMOS chip, an in-house built 4 × 2 mm ME film, an energy storage capacitor, and on-board electrodes on a flexible polyimide substrate with a total volume of 8.2 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . The chip with a power consumption of 23.7 μW includes robust system control and data recovery mechanisms under source amplitude variations (1-V variation tolerance). The system delivers fully-programmable bi-phasic current-controlled stimulation with patterns covering 0.05-to-1.5-mA amplitude, 64-to-512-μs pulse width, and 0-to-200Hz repetition frequency for neurostimulation.
Year
DOI
Venue
2020
10.1109/TBCAS.2020.3037862
IEEE Transactions on Biomedical Circuits and Systems
Keywords
DocType
Volume
Electrodes,Electromagnetic Fields,Implantable Neurostimulators,Prosthesis Design,Wireless Technology
Journal
14
Issue
ISSN
Citations 
6
1932-4545
0
PageRank 
References 
Authors
0.34
0
8
Name
Order
Citations
PageRank
Zhanghao Yu191.52
Joshua C Chen200.34
Fatima T Alrashdan300.34
Benjamin W Avants400.34
Yan He562.18
Amanda Singer631.03
Jacob T Robinson741.13
Kuiyuan Yang814820.89