Title
HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features
Abstract
We present HoHoNet, a versatile and efficient framework for holistic understanding of an indoor 360-degree panorama using a Latent Horizontal Feature (LHFeat). The compact LHFeat flattens the features along the vertical direction and has shown success in modeling per-column modality for room layout reconstruction. HoHoNet advances in two important aspects. First, the deep architecture is redesigned to run faster with improved accuracy. Second, we propose a novel horizon-to-dense module, which relaxes the per-column output shape constraint, allowing per-pixel dense prediction from LHFeat. HoHoNet is fast: It runs at 52 FPS and 110 FPS with ResNet-50 and ResNet-34 backbones respectively, for modeling dense modalities from a high-resolution 512 x 1024 panorama. HoHoNet is also accurate. On the tasks of layout estimation and semantic segmentation, HoHoNet achieves results on par with current state-of-the-art. On dense depth estimation, HoHoNet outperforms all the prior arts by a large margin.
Year
DOI
Venue
2021
10.1109/CVPR46437.2021.00260
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021
DocType
ISSN
Citations 
Conference
1063-6919
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Cheng Sun123.06
Min Sun2108359.15
Hwann-Tzong Chen382652.13