Title
Virtualizing Analog Mesh Computers: The Case of a Photonic PDE Solving Accelerator
Abstract
Innovative processor architectures play a critical role in sustaining performance improvements under severe limitations imposed by feature size and energy consumption. The Reconfigurable Optical Computer (ROC) is one such innovative, Post-Moore's Law processor. ROC is designed to solve partial differential equations in one shot as opposed to existing solutions, which are based on costly iterative computations. This is achieved by leveraging physical properties of a mesh of optical components that behave similarly to electrical resistances. However, building large photonic arrays to accommodate arbitrarily large problems is not yet feasible. It is also possible to have problems that are smaller than the size of the accelerator array. In both cases, virtualization is necessary. In this work, we introduce an architecture and methodology for light-weight virtualization of ROC. We show that overhead from virtualization is minimal, and our experimental results show two orders of magnitude increased speed as compared to microprocessor execution while keeping errors due to virtualization under 10%.
Year
DOI
Venue
2020
10.1109/ICRC2020.2020.00008
2020 International Conference on Rebooting Computing (ICRC)
Keywords
DocType
ISBN
Photonic computing,Hardware acceleration,Analog computers,Virtualization,Scientific computing,Emerging Technology,Parallel Processing
Conference
978-1-6654-1976-5
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Jeff Anderson110.75
Engin Kayraklioglu200.34
Hamid Reza Imani300.34
Mario Miscuglio400.34
Volker J. Sorger500.34
Tarek El-Ghazawi642744.88