Title
On-Line Learning Of Planning Domains From Sensor Data In Pal: Scaling Up To Large State Spaces
Abstract
We propose an approach to learn an extensional representation of a discrete deterministic planning domain from observations in a continuous space navigated by the agent actions. This is achieved through the use of a perception function providing the likelihood of a real-value observation being in a given state of the planning domain after executing an action. The agent learns an extensional representation of the domain (the set of states, the transitions from states to states caused by actions) and the perception function on-line, while it acts for accomplishing its task. In order to provide a practical approach that can scale up to large state spaces, a "draft" intensional (PDDL-based) model of the planning domain is used to guide the exploration of the environment and learn the states and state transitions. The proposed approach uses a novel algorithm to (i) construct the extensional representation of the domain by interleaving symbolic planning in the PDDL intensional representation and search in the state-transition graph of the extensional representation; (ii) incrementally refine the intensional representation taking into account information about the actions that the agent cannot execute. An experimental analysis shows that the novel approach can scale up to large state spaces, thus overcoming the limits in scalability of current approaches.
Year
Venue
DocType
2021
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
Conference
Volume
ISSN
Citations 
35
2159-5399
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Leonardo Lamanna100.68
Alfonso Gerevini21424100.21
Alessandro Saetti368542.53
Luciano Serafini42230204.36
Paolo Traverso53483223.80