Title
LTO: Lazy Trajectory Optimization with Graph-Search Planning for High DOF Robots in Cluttered Environments
Abstract
Although Trajectory Optimization (TO) is one of the most powerful motion planning tools, it suffers from expensive computational complexity as a time horizon increases in cluttered environments. It can also fail to converge to a globally optimal solution. In this paper, we present Lazy Trajectory Optimization (LTO) that unifies local short-horizon TO and global Graph-Search Planning (GSP) to generate a long-horizon global optimal trajectory. LTO solves TO with the same constraints as the original long-horizon TO with improved time complexity. We also propose a TO-aware cost function that can balance both solution cost and planning time. Since LTO solves many nearly identical TO in a roadmap, it can provide an informed warm-start for TO to accelerate the planning process. We also present proofs of the computational complexity and optimality of LTO. Finally, we demonstrate LTO's performance on motion planning problems for a 2 DOF free-flying robot and a 21 DOF legged robot, showing that LTO outperforms existing algorithms in terms of its runtime and reliability.
Year
DOI
Venue
2021
10.1109/ICRA48506.2021.9561502
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021)
DocType
Volume
Issue
Conference
2021
1
ISSN
Citations 
PageRank 
1050-4729
0
0.34
References 
Authors
7
4
Name
Order
Citations
PageRank
Yuki Shirai121.77
Xuan Lin202.37
Ankur Mehta302.03
Dennis W. Hong454.99