Title
Coarse-to-Fine Q-attention: Efficient Learning for Visual Robotic Manipulation via Discretisation
Abstract
We present a coarse-to-fine discretisation method that enables the use of discrete reinforcement learning approaches in place of unstable and data-inefficient actorcritic methods in continuous robotics domains. This approach builds on the recently released ARM algorithm, which replaces the continuous next-best pose agent with a discrete one, with coarse-to-fine Q-attention. Given a voxelised scene, coarse-to-fine Q-attention learns what part of the scene to ‘zoom’ into. When this ‘zooming’ behaviour is applied iteratively, it results in a near-lossless discretisation of the translation space, and allows the use of a discrete action, deep Q-learning method. We show that our new coarse-to-fine algorithm achieves state-of-the-art performance on several difficult sparsely rewarded RLBench vision-based robotics tasks, and can train real-world policies, tabula rasa, in a matter of minutes, with as little as 3 demonstrations.
Year
DOI
Venue
2022
10.1109/CVPR52688.2022.01337
IEEE Conference on Computer Vision and Pattern Recognition
Keywords
DocType
Volume
Vision applications and systems, Others, Robot vision
Conference
2022
Issue
Citations 
PageRank 
1
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Stephen James1586.02
Kentaro Wada200.34
Tristan Laidlow382.20
Andrew J. Davison46707350.85