Title
Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems
Abstract
Multi-robot simultaneous localization and mapping (SLAM) is a crucial capability to obtain timely situational awareness over large areas. Real-world applications demand multi-robot SLAM systems to be robust to perceptual aliasing and to operate under limited communication bandwidth; moreover, it is desirable for these systems to capture semantic information to enable high-level decision-making and spatial artificial intelligence. This article presents <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \mathsf{{Kimera-Multi}} $</tex-math></inline-formula> , a multi-robot system that: 1) is robust and capable of identifying and rejecting incorrect inter- and intrarobot loop closures resulting from perceptual aliasing; 2) is fully distributed and only relies on local (peer-to-peer) communication to achieve distributed localization and mapping; and 3) builds a globally consistent metric-semantic 3-D mesh model of the environment in real time, where faces of the mesh are annotated with semantic labels. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \mathsf{{Kimera-Multi}} $</tex-math></inline-formula> is implemented by a team of robots equipped with visual-inertial sensors. Each robot builds a local trajectory estimate and a local mesh using <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \mathsf{{Kimera}} $</tex-math></inline-formula> . When communication is available, robots initiate a distributed place recognition and robust pose graph optimization protocol based on a distributed graduated nonconvexity algorithm. The proposed protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures while being robust to outliers. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \mathsf{{Kimera-Multi}} $</tex-math></inline-formula> in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots. Both real and simulated experiments involve long trajectories (e.g., up to 800 m per robot). The experiments show that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \mathsf{{Kimera-Multi}} $</tex-math></inline-formula> : 1) outperforms the state of the art in terms of robustness and accuracy; 2) achieves estimation errors comparable to a centralized SLAM system while being fully distributed; 3) is parsimonious in terms of communication bandwidth; 4) produces accurate metric-semantic 3-D meshes; and 5) is modular and can also be used for standard 3-D reconstruction (i.e., without semantic labels) or for trajectory estimation (i.e., without reconstructing a 3-D mesh).
Year
DOI
Venue
2022
10.1109/TRO.2021.3137751
IEEE Transactions on Robotics
Keywords
DocType
Volume
Multi-robot systems,simultaneous localization and mapping,robot vision systems
Journal
38
Issue
ISSN
Citations 
4
1552-3098
1
PageRank 
References 
Authors
0.34
53
6
Name
Order
Citations
PageRank
Yulun Tian141.39
Yun Chang230.71
Fernando Herrera Arias310.34
Carlos Nieto-Granda4507.37
Jonathan How51759185.09
Luca Carlone664842.93