Title
Safe endoscope holding in minimally invasive surgery: zero stiffness and adaptive weight compensation
Abstract
One of the major functions brought by robots in Minimally Invasive Surgery is endoscope holding. This consists, for the user, in placing the camera at a desired location which the robot will maintain still once he/she releases it. This behavior is usually achieved with rigid position servoing, leading to possibly high forces generated and safety issues. Model-based weight compensation is an alternative solution. However, endoscopic cameras' weight is difficult to model as their gravity parameters can change during the same surgery. In this paper, an algorithm is presented as an option to cope with this variability in the gravity model without using rigid position servoing. The surgeon first positions the camera in a comanipulation mode (gravity compensation). When he/she releases the camera, if the gravity model is not accurate, the endoscope presents a drift. In this case, a controller brings the endoscope back to its release position by combining low gain position control and model adaptation. Once stabilized, the system is switched back to a zero-stiffness mode. Two in-vitro experiments were performed in which a user manipulates an endoscope whose configuration of mass is changed. In one case, the mass in the gravity model was set to half of the actual one. In the second case, a variable weight was attached to the endoscope. The algorithm successfully updated the model for each experiment reducing position errors by 95% and 57%, respectively.
Year
DOI
Venue
2022
10.1109/ICRA46639.2022.9811359
IEEE International Conference on Robotics and Automation
DocType
Volume
Issue
Conference
2022
1
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Jesus Mago100.34
François Louveau200.68
Marie-Aude Vitrani300.68
Guillaume Morel46215.01