Title
Fabrication of PEDOT:PSS based Soft Sensor for Feedback Control of Modular Bio-actuator
Abstract
In this paper, we fabricated a soft sensor based on PEDOT:PSS for thin film structure. The developed soft sensor can measure the contraction force at real time to be embedded in a modular bio-actuator [1]. The modular actuator generated contraction forces at 0.3 mN when applying electric pulse stimulation. To measure millinewton contraction forces and make a built in sensor, we fabricated a soft sensor using PEDOT:PSS-PDMS film. To verify that the sensor can measure the force of the actuator and can be integrated to the actuator, we analyzed characteristic of the sensor. First, we measure Young's modulus of the sensor and compare them with the bio-actuator. From the previous research [2], the Young's modulus of the bio-actuator and sensor were 45.8 kPa and 165 kPa, respectively. In addition, we simulated the sensors to estimate the change of the displacement according to the applied force. Next, we have experiments by stretching sensors using stepping motor to measure the resistance change of the sensor. From the simulation data, the displacement change is 23 µm when applying 0.3 mN of forces and then we detect the displacement change smaller than is 20 µm from the experiments. Finally, we analyzed the movement of the bio-actuator when applying stimulation using high speed camera and time response of the developed sensor. The actuator was contracted to the maximum after 150 ms from the electrical stimulation and the sensor detected the repeated motion at 10 Hz without time delay. As a result, the proposed sensor can measure the force of bioactuator at real time.
Year
DOI
Venue
2022
10.1109/ICRA46639.2022.9811795
IEEE International Conference on Robotics and Automation
DocType
Volume
Issue
Conference
2022
1
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Eun-Hye Kim11910.40
Masaru Takeuchi200.34
Takuto Nomura302.03
Yasuhisa Hasegawa445694.62
Qiang Huang526691.95
Toshio Fukuda62723818.58