Title
Fogshop: Real-Time Design and Rendering of Inhomogeneous, Single-Scattering Media
Abstract
We describe a new, analytic approximation to the airlight integral from scattering media whose density is modeled as a sum of Gaussians. The approximation supports real-time rendering of inhomogeneous media including their shadowing and scattering effects. For each Gaussian, this approximation samples the scattering integrand at the projection of its center along the view ray but models attenuation and shadowing with respect to the other Gaussians by integrating density along the fixed path from light source to 3D center to view point. Our method handles isotropic, single-scattering media illuminated by point light sources or low-frequency lighting environments. We also generalize models for reflectance of surfaces from constant-density to inhomogeneous media, using simple optical depth averaging in the direction of the light source or all around the receiver point. Our real-time renderer is incorporated into a system for real-time design and preview of realistic animated fog, steam, or smoke.
Year
DOI
Venue
2007
10.1109/PG.2007.48
Pacific Conference on Computer Graphics and Applications
Keywords
Field
DocType
airlight,gaussian,radial basis function rbf.
Isotropy,Computer vision,Optical depth,Computational physics,Computer science,Shadow mapping,Gaussian,Scattering,Artificial intelligence,Attenuation,Rendering (computer graphics),Light scattering
Conference
ISSN
ISBN
Citations 
1550-4085
978-0-7695-3009-3
31
PageRank 
References 
Authors
1.05
31
6
Name
Order
Citations
PageRank
Kun Zhou13690159.79
Qiming Hou252923.72
Minmin Gong328212.26
John Snyder42579172.17
Baining Guo53970194.91
Heung-Yeung Shum610824739.88