Title
Kinematic isotropy and the optimum design of parallel manipulators
Abstract
The differential kinematic equations (DKE) of parallel manip ulators usually involve two Jacobian matrices that, depending on the role they play in the kinetostatic transformation between the joint and Cartesian variables, are commonly referred to as the forward and the inverse Jacobians. In this article, we make use of the special structure of these Jacobians to define a set of conditions under which a parallel manipulator can be rendered isotropic. These conditions are general, and pro vide a systematic method for the optimum kinematic design of parallel manipulators, with or without introducing structural constraints. The application of the proposed conditions is illus trated in detail through a few examples, one of which pertains to the design of a 6-DOF isotropic parallel manipulator.
Year
DOI
Venue
1997
10.1177/027836499701600205
I. J. Robotic Res.
Keywords
Field
DocType
parallel manipulator,optimum design,kinematic isotropy
Parallel manipulator,Inverse,Isotropy,Kinematics,Jacobian matrix and determinant,Control theory,Matrix (mathematics),Mathematics,Cartesian coordinate system
Journal
Volume
Issue
ISSN
16
2
0278-3649
Citations 
PageRank 
References 
70
6.29
7
Authors
2
Name
Order
Citations
PageRank
Kourosh E. Zanganeh113116.04
Jorge Angeles214717.63