Title
Solving Models Of Controlled Dynamic Planar Rigid-Body Systems With Frictional Contact
Abstract
Effective modeling and control of multibody systems interacting with their environment through frictionol contact remain a challenging problem. In this paper we address the planar version of this problem by developing a general method to compute the instantaneous dynamic solution for planar rigid bodies interacting with their environment through Coulomb frictional contacts. The resulting analytical forward solution is represented in piecewise linear form, which admits tractable inversion for implementing behavioral control. We address the inherent problem of ambiguity in the resulting model (both between and within a particular linear model) by, resorting to enumeration techniques and solve, for the complete collection of possible model solutions in the presence of both contact constraints and additional task-specific linear constraints. We illustrate the application of these techniques by developing a controller to reliably achieve the dynamic self-righting of a hexapod robot.
Year
DOI
Venue
2005
10.1177/0278364905059056
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Keywords
Field
DocType
rigid body dynamics, contact modeling, dynamic flipping, static indeterminacy, dynamic indeterminacy, Coulomb friction, RHex robot
Coulomb,Control theory,Linear model,Control theory,Rigid body,Planar,Hexapod,Piecewise linear function,Rigid body dynamics,Mathematics
Journal
Volume
Issue
ISSN
24
11
0278-3649
Citations 
PageRank 
References 
6
0.62
16
Authors
3
Name
Order
Citations
PageRank
Aaron Greenfield1978.49
Uluc̣ Saranlı257469.38
Alfred A. Rizzi31208179.03