Title
Hierarchical Segmentation of Piecewise Pseudoextruded Surfaces for Uniform Coverage
Abstract
Complete automation of trajectory planning tools for material deposition/removal applications has become increasingly necessary to reduce the ldquoconcept-to-consumerrdquo timeline for rapid product introduction in industries such as the automotive industry. The work in this paper is specifically motivated by automotive spray painting. Prior developments in automated trajectory planning tools promise to reduce the time required to program the robots; however, these approaches are limited to surfaces that are either approximately planar or topologically simple (i.e., with no holes). To extend the applicability of these planning tools to nonplanar and topologically complex surfaces, currently the user has to manually segment a complex surface into simpler subsets, i.e., subsets that are approximately extruded surfaces and contain no holes. However, the complex nature of the relationships between surface segmentation and resulting output characteristics such as material deposition uniformity, process cycle time, and material waste makes the task of manually segmenting the surface difficult. In this paper, we develop a hierarchical procedure that automatically segments a surface based on surface geometry, surface topology, and path geometry to obtain topologically simple subsets that are approximately extruded surfaces. Finally, we compare the effectiveness of our segmentation with the state of the art on a few automotive surfaces in simulation.
Year
DOI
Venue
2009
10.1109/TASE.2008.916768
Automation Science and Engineering, IEEE Transactions
Keywords
Field
DocType
automobile industry,industrial robots,painting,position control,spray coating techniques,automotive industry,automotive spray painting,hierarchical segmentation,material deposition uniformity,piecewise pseudoextruded surfaces,surface segmentation,trajectory planning tools,uniform coverage,Automation,automotive painting,coverage,segmentation,trajectory planning
Motion planning,Engineering drawing,Computer science,Segmentation,Spray painting,Computer Aided Design,Algorithm,Automation,Control engineering,Piecewise,Trajectory,Automotive industry
Journal
Volume
Issue
ISSN
6
1
1545-5955
Citations 
PageRank 
References 
8
0.58
8
Authors
5
Name
Order
Citations
PageRank
Prasad N. Atkar115812.25
David C. Conner217416.75
Aaron Greenfield3978.49
Howie Choset42826257.12
Alfred A. Rizzi51208179.03