Title
Predictive Die-Level Reliability-Yield Modeling for Deep Sub-micron Devices
Abstract
An increasing number of integrated circuits are going into the automotive sector where requirements on dependability are very high. As a result, there is a strong push in the semiconductor industry for achieving higher reliability standards while maintaining (or even lowering) the associated cost. Lately two efficient approaches to increase the effectiveness of reliability testing (including burn-in) have emerged. The first involves additional reliability test insertions. It is quite effective but limited to specific technology and processes. A more robust approach is to screen out devices with latent defects at probe (wafer level) through appropriate selection criteria before devices reach burn-in at the package- level. Traditional six-sigma quality assurance procedures are inadequate in coping with the fabrication process variations because the process is not static. Dynamic parts average testing (PAT) has been introduced by the Automotive Electronics Council to identify abnormal parts from a large population mean. It is the first standard procedure that deviates from the traditional six-sigma approach. Independent studies by Intel and IBM have shown that a die-level reliability predictor can screen unreliable devices better than dynamic PAT (which is based on a lot-level methodology). However, the die-level predictive model is relatively new and thus it needs further investigation to prove its usability in different technology and process settings. This paper studies the die-level predictive model for a specific wafer fabrication technology and critically assesses its performance and feasibility for implementation in a real-world production testing.
Year
DOI
Venue
2008
10.1109/DELTA.2008.105
Hong Kong
Keywords
Field
DocType
semiconductor device manufacture,semiconductor device models,semiconductor device reliability,automotive electronics council,automotive sector,deep submicron devices,die level predictive model,dynamic parts average testing,predictive die level,reliability testing,reliability yield modeling,semiconductor industry,six sigma approach,wafer fabrication technology,burn-in,integrated circuits,reliability,wafer testing,yield modelling
Automotive electronics,Population,Dependability,Computer science,Usability,Wafer fabrication,Burn-in,Electronic engineering,Wafer testing,Reliability engineering,Quality assurance
Conference
ISBN
Citations 
PageRank 
978-0-7695-3110-6
1
0.38
References 
Authors
3
4
Name
Order
Citations
PageRank
Melanie Po-Leen Ooi17018.35
Ye Chow Kuang27219.81
Chris Chan310.38
Demidenko, S.481.37