Title
Dynamic Reconstruction Of Deformable Soft-Tissue With Stereo Scope In Minimal Invasive Surgery
Abstract
In minimal invasive surgery, it is important to rebuild and visualize the latest deformed shape of soft-tissue surfaces to mitigate tissue damages. This letter proposes an innovative Simultaneous localization and mapping (SLAM) algorithm for deformable dense reconstruction of surfaces using a sequence of images from a stereoscope. We introduce a warping field based on the embedded deformation nodes with three-dimensional (3-D) shapes recovered from consecutive pairs of stereo images. The warping field is estimated by deforming the last updated model to the current live model. Our SLAM system can incrementally build a live model by progressively fusing new observations with vivid accurate texture; estimate the deformed shape of unobserved region with the principle as-rigid-as-possible; show the consecutive shape of models; and estimate the current relative pose between the soft-tissue and the scope. In-vivo experiments with publicly available datasets demonstrate that the 3-D models can be incrementally built for different soft-tissues with different deformations from sequences of stereo images obtained by laparoscopes. Results show the potential clinical application of our SLAM system for providing surgeon useful shape and texture information in minimal invasive surgery.
Year
DOI
Venue
2018
10.1109/LRA.2017.2735487
IEEE ROBOTICS AND AUTOMATION LETTERS
Keywords
Field
DocType
SLAM, soft-tissue, surgical vision
Iterative reconstruction,Computer vision,Image warping,Stereoscope,Solid modeling,Artificial intelligence,Engineering,Surgery,Simultaneous localization and mapping
Journal
Volume
Issue
ISSN
3
1
2377-3766
Citations 
PageRank 
References 
4
0.42
13
Authors
5
Name
Order
Citations
PageRank
Jingwei Song1111.88
Jun Wang29228736.82
Liang Zhao310013.74
Shoudong Huang475562.77
Gamini Dissanayake52226256.36