Title
A systematic approach for minimizing physical experiments to identify optimal trajectory parameters for robots
Abstract
Use of robots is rising in process applications where robots need to interact with parts using tools. Representative examples can be cleaning, polishing, grinding, etc. These tasks can be non-repetitive in nature and the physics-based models of the task performances are unknown for new materials and tools. In order to reduce operation cost and time, the robot needs to identify and optimize the trajectory parameters. The trajectory parameters that influence the performance can be speed, force, torque, stiffness, etc. Building physics-based models may not be feasible for every new task, material, and tool profile as it will require conducting a large number of experiments. We have developed a method that identifies the right set of parameters to optimize the task objective and meet performance constraints. The algorithm makes decisions based on uncertainty in the surrogate model of the task performance. It intelligently samples the parameter space and selects a point for experimentation from the sampled set by determining its probability to be optimum among the set. The iterative process leads to rapid convergence to the optimal point with a small number of experiments. We benchmarked our method against other optimization methods on synthetic problems. The method has been validated by conducting physical experiments on a robotic cleaning problem. The algorithm is general enough to be applied to any optimization problem involving black box constraints.
Year
DOI
Venue
2017
10.1109/ICRA.2017.7989045
2017 IEEE International Conference on Robotics and Automation (ICRA)
Keywords
Field
DocType
optimal trajectory parameters,physics-based models,surrogate model,probability,iterative process,robotic cleaning problem,optimization problem,black box constraints
Black box (phreaking),Mathematical optimization,Torque,Iterative and incremental development,Work in process,Surrogate model,Control engineering,Engineering,Robot,Optimization problem,Trajectory
Conference
Volume
Issue
ISBN
2017
1
978-1-5090-4634-8
Citations 
PageRank 
References 
1
0.36
6
Authors
5
Name
Order
Citations
PageRank
Ariyan M. Kabir1186.94
Joshua D. Langsfeld2163.32
Cunbo Zhuang310.36
Krishnanand N. Kaipa48110.88
Satyandra K Gupta568777.11