Title
Fast and Memory Efficient Differentially Private-SGD via JL Projections.
Abstract
Differentially Private-SGD (DP-SGD) of Abadi et al. and its variations are the only known algorithms for private training of large scale neural networks. This algorithm requires computation of per-sample gradients norms which is extremely slow and memory intensive in practice. In this paper, we present a new framework to design differentially private optimizers called DP-SGD-JL and DP-Adam-JL. Our approach uses Johnson–Lindenstrauss (JL) projections to quickly approximate the per-sample gradient norms without exactly computing them, thus making the training time and memory requirements of our optimizers closer to that of their non-DP versions. Unlike previous attempts to make DP-SGD faster which work only on a subset of network architectures or use compiler techniques, we propose an algorithmic solution which works for any network in a black-box manner which is the main contribution of this paper. To illustrate this, on IMDb dataset, we train a Recurrent Neural Network (RNN) to achieve good privacy-vs-accuracy tradeoff, while being significantly faster than DP-SGD and with a similar memory footprint as non-private SGD.
Year
Venue
DocType
2021
Annual Conference on Neural Information Processing Systems
Conference
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Bu, Zhiqi111.37
Sivakanth Gopi202.03
Janardhan Kulkarni300.34
Yin Tat Lee439636.67
Judy Hanwen Shen500.34
Uthaipon Tantipongpipat693.79