Title
Computationally-Robust and Efficient Prioritized Whole-Body Controller with Contact Constraints.
Abstract
In this paper, we devise methods for the multiobjective control of humanoid robots, a.k.a. prioritized whole-body controllers, that achieve efficiency and robustness in the algorithmic computations. We use a form of whole-body controllers that is very general via incorporating centroidal momentum dynamics, operational task priorities, contact reaction forces, and internal force constraints. First, we achieve efficiency by solving a quadratic program that only involves the floating base dynamics and the reaction forces. Second, we achieve computational robustness by relaxing task accelerations such that they comply with friction cone constraints. Finally, we incorporate methods for smooth contact transitions to enhance the control of dynamic locomotion behaviors. The proposed methods are demonstrated both in simulation and in real experiments using a passive-ankle bipedal robot.
Year
DOI
Venue
2018
10.1109/IROS.2018.8593767
IROS
DocType
Volume
Citations 
Conference
abs/1807.01222
2
PageRank 
References 
Authors
0.45
0
5
Name
Order
Citations
PageRank
Donghyun Kim1163.89
Jaemin Lee262.94
Orion Campbell342.18
Hochul Hwang420.45
Luis Sentis557459.74